\qquad

$$
x+3 \geq 2 \text { or } x+3 \leq-2
$$

k. Which graph represents the solution ser for $|x+3| \geq 2 ?$

4. The functions $y=\frac{x+10}{2}$ and $y=\frac{x-6}{x}$ are graphed below.
C)

13.

2. What is the solution set for $|3 x|+2<14$?
A. $x<-4$ $|3 x|<12$
B. $x>4 \quad 3 x<1$ and $3 x \geq-12$
C. $x<-4$ or $x>4 x<4$ and $x>-4$
(D) $-4<x<4$
3. What is the solution set for $|2 x-7| \leq 3$?

A. $2 \leq x \leq 5 \quad 2 x=7 \leq 3$ and $2 x-7 \geq-3$
B. $-5 \leq x \leq 2 \quad 2 x \leq 10$ and $2 x \geq 4$
C. $x \leq-5$ or $x \geq 2 x \leq 5$ and $x \geq 2$
A. $x=6$ only
D. $x \leq 2$ or $x \geq 5$
B. $x=-6$ or $x=2$.
C. $x=-2$ or $x=4$
(D.) $x=-2$ or $x=-6$
5. Solve the equation for x you can cross

$3|x-4|<9$
$x-4<3$ and $x-4>-3$
$x<7$ and $x>1$
$\frac{x}{16-x}=\frac{2}{x+2}$ multiplying when yon
A. $x=-8$ or $x=4$
B. $x=-4$ or $x=8$
C. $x=-2$ or $x=8$
D. $x=2$ or $x=8$
$x(x+2)=2(11-x)$
$x^{2}+2 x=32-2 x$

$$
\begin{aligned}
& x^{2}+4 x-32=0 \\
& x-8)(x-4)=0 \\
& y-8, x \quad 4=6 \\
& x-8 \quad x=4
\end{aligned}
$$

\qquad Date: \qquad
SOL Review Topic 5: Graphs of Functions
Logs, Exponentials, Absolute Value, Quadratics, Higher Order Polynomials, Cube, Cube Root, Square Roots, Rational Equations
(/Increasing, Decreasing, Domain, Range, Transformations, Asymptotes, Inequalities)
Recognizing Graphs of Functions
What is the name of the function show in each graph below? What is the equation of the graph?
1)

$$
y=\log x
$$

4)

$$
y=x^{2}
$$

7)

2)

$$
y=2^{x}
$$

5)

8)

$$
y=\sqrt[3]{x}
$$

6)
7)

$$
y=x^{3}
$$

$$
y=\sqrt{x}
$$

8) Which of the above graphs have a domain or all real numbers? Exponential (2), Cubic (3), Quadric (4), Abs Value (5), Cube Coot (8)
9) Which of the above functions have a range of all real numbers? Logrithmic (i), Cube (3), Cube Root (8)
10) Which of the above functions have asymptotes? What are the equations of the asymptotes?
logithmic
Expmeatio.

$$
y=2^{x}
$$

$$
y=\frac{x}{x}
$$

\qquad Date: \qquad

Transformation Equations

For each of the following, name the function and the vertex (or pivot point). Then give the equation of the function after it has been shifteright by three and down 2.
11) $y=2(x-3)^{2}-5$

Name:

Vertex:
Translated Equation:
$y=(6,-7)$
14) $y=\sqrt{x+4}+15$

Name: $\frac{\text { Square Root }}{(-4,15)}$
Translated Equation:
$y=(-1,13)$
12) $y=(x-1)^{3}$

Name:

Vertex: \qquad
Translated Equation:
$y=(4,-2)$
15) $y=\log (x+1)-7$

Name: \log
Vertex: $(0,-7)$
Translated Equation:
$y=(3,-9)$
13) $y=|x-6|$

Translated Equation:
$y=(9,-2)$ $y=3^{x}$
16) $y=3^{x}-1$

Name: $\frac{\text { Exponential }}{(0,0)}$
Translated Equation:
$y=(3,-2)$

Domain, Range, Increasing Decreasing

For each of the following, determine the domain, range, intervals to which the function is increasing and decreasing, is sign of the leading coefficient and the end behavior.
17)

Domain: $(-\infty, \infty)$
Range: $(-\infty, \infty)$
Increasing: $(-\infty,-2) \cup(0, \infty)$

$$
\text { Increasing: }(-\infty, 3)
$$

Decreasing: $-(-2,0)$
As $x \rightarrow \infty, f(x) \rightarrow+\infty$
As $x \rightarrow-\infty, f(x) \rightarrow-\infty$
Leading Coefficient: Positive
Factors: $(x+2),(x-1)$
Possible Equation: $f(x)=(x-1)(x+2)^{2}$
18)

Domain:

$$
(-\infty, \infty)
$$

Range:

$$
(-\infty, 5]
$$

Decreasing: $(3, \infty)$
As $x \rightarrow \infty, f(x) \rightarrow$ -
As $x \rightarrow-\infty, f(x) \rightarrow-\infty$
Leading Coefficient: negative

Asymptotes

Find all asymptotes of the following functions.
$\frac{B 1 G}{S n \sigma^{1}}=$ Nona
19) $y=\log (x-5)$
$x=5$

Vertical: $x=5$

$\frac{\text { Same }}{\text { Same }}=$ Corse Horizontal: None
22) $y=\frac{1}{3 x^{2}+3 x-18}$
$0=(3 x-6)(x+3)$
$3 x-6=0 \quad x+3=0$
$3 x=6 \quad x=-3$

$$
x=2
$$

$V: x=2, x=-3$
$H: y=0$

Inequalities

Graph the following inequality:
25) $y \leq-3|x-4|+4$
$\frac{S_{\text {mall }}}{\text { Bin }}=y=0$
\qquad
20) $y=4^{x}-1$

$$
y=1
$$

V: none

$$
H=y=1
$$

23) $y=\frac{x+4}{2 x-6}$

$$
2 x-6=0
$$

$$
2 x=6
$$

$$
x=3
$$

$$
V: x=3
$$

$$
\begin{aligned}
& V: x=3 \\
& 4: y=\frac{1}{2}
\end{aligned}
$$

21) $y=\frac{x}{4 x+1}$

$$
\begin{gathered}
4 x+1=0 \\
4 x=-1
\end{gathered} \quad y=\frac{1}{4}
$$

$$
x=-\frac{1}{4}
$$

$$
\begin{aligned}
& V: x=-\frac{1}{4} \\
& H: y=\frac{1}{4}
\end{aligned}
$$

$$
H: y=\frac{1}{4}_{4}^{4}
$$

24) $y=\frac{4}{x}+3$
$V: X=0$
$H: y=0+3 \geqslant y=3$

Zeros: Find $f(0)$ for the following functions. Name the \# of real and imaginary solutions \& degree.
Remember $f(0)^{\prime} s=x$-intercepts $=$ zeros $=$ solutions $=$ roots.
26)

$f(0)=-3,0,3$
\# of Real Solutions $=3$ (l Double Root) \# of Imaginary Solutions $=0$
Degree of Function: \qquad
27)

$f(0)=$ \qquad
\# of Real Solutions = \qquad \# of Imaginary Solutions = 2
Degree of Function: \qquad
\qquad Date: \qquad

Functions

Be able to recognize the graphs for the following functions: linear, quadratic, absolute value, polynomial (cube and cube root especially), exponential, and logarithm functions.
Equation examples: $y=2 x-3 \rightarrow$ Linear (degree of 1), $y=x^{2} \rightarrow$ Quadratic (degree of 2), $y=|x| \rightarrow$ Absolute Value, $y=x^{3} \rightarrow$ Cube function, $y=\sqrt[3]{x} \rightarrow$ Cube Root, $y=2^{x} \rightarrow$ Exponential (a number raised to the x power), $y=\log _{2} x \rightarrow$ Logarithm

| Equation etc |
| :--- | :--- |
| $y=m x+b(S I)$ |

$a x+b y=c(S F)$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ slope
b is $(0, b) y$-intercept (x_{1}, y_{1}) point on the line

Absclute Value "V"

Square Root

Horizontal line HOY y=\#, zero slope

Vertical lines are not functions (VUX) $x=\#$ undefined slope $y=a(x-h)^{2}+k$ Vertex (h,k)
opposite same $a>0$ opens up, $a<0$ opens down
$|a|>1$ stretch, $|a|<1$ shrink

opposite same
$a>0$ opens up, $a<0$ opens
down
$|a|>1$ stretch, $|a|<1$ shrink
$y=a \sqrt{x-h}+k$

	opposite same Starting point (h, k) $a>0$ opens up, a<0 reflects down $\|a\|>1$ stretch, $\|a\|<1$ shrink
	$y=a \sqrt[3]{x-h}+k$ opposite same Turning Point (h, k) a>0 as graph on left , a<0 reflects $\|a\|>1$ stretch, $\|a\|<1$ shrink
Exponential Growth	$\begin{aligned} & y=a(b)^{(x-h)}+k \quad b>1 \\ & y=k \text { is the horizontal } \\ & \text { asymptote } \\ & e \quad \approx 2.72 \text { (natural log } \\ & \text { base e) } \end{aligned}$
Logarithmic	$y=\log _{b}(x-h)+k$ (inverse of exponential). $\log _{b}(a)=\frac{\log a}{\log b}$ $x=h$ is vertical asympt. Log is log base 10 Ln is log base e

\qquad
\qquad

Polynomials: To find the zeros of a polynomial equation, either:
1.) Graph the equation on your calculator and look at where the graph crosses/touches the x-axis
Or 2.) Solve the equation by factoring and setting each factor $=0$ (may need to use the quadratic formula (given to you on the 'formula' screen.) You must do this when you cannot tell where the graph crosses or if it doesn't cross the x-axis.)

Polynomials Example: Cubic Degree 3	Zeros 1. Real Zeros are the x values of the x intercepts. 2. Zeros are also called roots, or solutions 3. If the zero is $x=h$, then its factor is ($\mathrm{x}-\mathrm{h}$) 4. The number of zeros $=$ the degree (this includes real, imaginary and double roots)	Types 1. If there are no x ntercepts there are no real zeros, (all zeros will be imaginary) 2. A tangent implies a double root (repeated solution) 3. Irrational zeros come in pairs as do imaginary zeros	Turns 1. The maximum number of turns is equal to the degree -1 .	End Behavior 1. If the leading coefficient (LC) is ' + ' the right behavior rises, if the LC is "-' the right behavior falls 2. If the degree is even, right and left behavior will be the same, if the degree is odd right and left behavior is opposite.

Finding Domain/Range,

A 'Function' means that x-values do not repeat---it must pass the vertical line test.
Domain - set of all x-values \quad Range - set of all y-values
Ex 1: Find the Domain/Range of $y=x^{2}-3$.
From the graph shown: (Note: \mathfrak{M} symbol means "all reals")
Domain = All Real Numbers
Range $=$ All Numbers Greater than -3
Increasing/Decreasing Intervals

$::^{\prime}$: $: 1:: 1$
	$::,::$:
:	$\because:$
…	-
: ${ }^{\text {d }}$	$y::$: $:$:
:: :: : : :	
:: :: : :	:: :: :: :

As x increases from - infinity to + infinity (read from left \rightarrow right), do y values increase or decrease? The intervals will be the x values in these areas.

Ex 3: What are the decreasing intervals? The function decreases from $(0,2)$
\qquad
\qquad

Leading Coefficients

if the function ends up, the leading coefficient is positive. If the function ends lown, the leading coefficient is negative.

Transformations

What is the new equation shown in bold in the graph to the right?
The parent graph is the cube root function $y=\sqrt[3]{x}$. The function is shifted down by 2 therefore the new equation is $y=\sqrt[3]{x}-2$

Rational Functions: See the chart for information on rational graphs:

Rational Function	$y=\frac{p(x)}{q(x)}$ where $p(x)$ and $q(x)$ are polynomial functions $q(x) \neq 0$ discontinuous	Domain all real numbers except the values that make $q(x)=0$ Zeros of function set $p(x)=0$ and solve	Vertical Asymptotes: Set $q(x)=0$ and solve. Look at domain restrictions. Horizontal Asymptotes: 1. Degree of $p(x)<$ Degree of $q(x)$ $y=0$ 2. Degree of $p(x)>$ Degree of $q(x)$ None 3. Degree of $p(x)=$ Degree of $q(x)$ $y=L C$ of $p(x) / L C$ of $Q(x)$

Factors, Zeros and Equations

What is the sign of leading coefficient of the graph to the right?
The leading coefficient is positive because the function ends up.

Determine the end behavior.
As $x \rightarrow+\infty, f(x) \rightarrow+\infty$ and As $x \rightarrow-\infty, f(x) \rightarrow+\infty$

What are the factors?
$x,(x+3),(x+1)$

What is a possible equation?

$$
f(x)=x(x+3)(x+1)^{2}
$$

What are the zeros of the function? Remember - $f(0)^{\prime} s=x$-intercepts = zeros $=$ solutions $=$ roots .
$\{-3,-1,0\}$

1. Which describes how the graph of $f^{\prime}(x)=\sqrt{x}$ could be transformed to form the graph of $h(x)=\sqrt{x+6}$?

A. translation of 6 units up
B. translation of G units to the left
C. erarislation of 6 units to the right
D. dilation (vertical shrink)
2. Which describes how the graph of $f(x)=\sqrt[3]{x}$ could be transformed to form the graph of $h(x)=4 \sqrt[3]{x}$?

A. reflection across the y-axis
B. translation 3 units to the left

G translation 3 units down
D. dilation (vertical stretch)
3. Which describes how the graph of $f(x)=|x|$ could be transformed to form the graph of $h(x)=-|x|$?

A. translation of 1 unit down
B. translation of l unit up
C. reflection across the x-axis
D. reflection across the y-axis
4. The graph below was created by reflecting the graph of its parent function over the y-axis.

Which equation names its parent function?
A. $f(x)=\sqrt{x}$
B. $f(x)=\sqrt[3]{x}$
C. $f(x)=|x|$
D. $f(x)=\frac{1}{x}$
7. Which statement is not true of the
function $f(x)=-2\left(4^{x}\right)+2$?
(a) It is increasing.

13. Its x-intercept is the fame as its y-intercept, (0,0).
C. Irs horizontal asymptote is the line
$y=2$.

PRACTICE:

1. Below is che graph of $f(x)=-2 x+6$.

What is che x-intercept of this function?

A. $(0,6)$
B. $(0,3)$
C. $(3,0)$

- D. $(6,0)$

Below is the graph of $f(x)=\frac{1}{x+2}$.

6. What is the domain of this function? (Use a graphing calculator so confirm your results.)
A. the sec of all real numbers except. ${ }^{-2}$
B. the set fall real numbers except 0
C. the ser of all real numbers except 2
D. the set of all real numbers because the function is continuous

Below is the graph of a function.

8. On what interval is the function increasing?
A. $(-\infty,-6)$
B. $(-4,5)$
C. $(-4,2)$
9. Which scatement is not true about the function graphed above?
A. If is decreasing on the interval $(-6,-4)$

(3. It is constant on the interval $(-\infty,-6)$.
6). Y
C. It has a y-intercept ar $(0,-1)$.
D. Ins domain is: $-6 \leq x \leq 5$.
C. $\begin{aligned} & x=-2 \text { and } y=-2 \\ & x=-2 \text { and } y=0\end{aligned}$

Horizontal fyymptotes

$$
\frac{316}{\text { small }}=\text { None } \frac{\operatorname{smal}}{\text { same }}=y=0
$$

$$
\frac{\text { some }}{\text { som en }}=\frac{\text { Rato of }}{\text { Cuefients }}
$$

Same Cuffeists dy re Varidbu

PRACTICE:

3. The parent graph $f(x)=x^{3}$ was transformed to form the graph of the function ty shown below. What is the equation of the resulting graph?

(A) $H(x)=(x-3)^{2}$
B. $h(x)=(x+3)^{2}$
C. $h(x)=x^{2}-3$
D. $h(x)=x^{2}+3$
4. Which could describe how the graph of $f^{\prime}(x)=x^{2}$ could be transformed to form the graph of $f(x)=-2 x^{2}$ in two steps? -

A. reflection across the y-axis follower by a vertical shift of 2 units up
B. reflection across the x-axis followed by a vertical shift of 2 units up
C. reflection across the y-axis followed by a vertical stretch by a factor of 2
(D.) reflection across the x-axis followed br s werriral stretch hor faction of 2
Below is the graph of $f(x)=-2 x^{2}-4 x$.

5. What is the range for this function? $(-\infty, 2)$
A. the set of all real numbers
B.) $y \leq 2$
C. $y \geq 2$
D. $-2 \leq y \leq 0$
6. Which is wat true of chis functi on
A. Its zeros ate -2 and 0 .
B. $(-2,0)$ is an x-intercept for this function.
C. $(0,0)$ is an x-intercept and a
y-intercept for this function.
D. $\left\{\begin{array}{l}y \text { Intercept for this function. } \\ \{-\infty<x<1\}\end{array}\right.$

$$
\{-\infty<x<-1\}
$$

$$
\text { or }(-\infty ;-1)
$$

$$
-2 y=-2 x^{2}+6 x+26
$$

\qquad

$$
\rightarrow
$$

7. What is the end behavior for the graph of Graph it!
the function $2 x-26$? the function $2 x^{2}-2 y=6 x+26$?
A. Both arms of the parabola point down.
B. Both arms of the parabola point up.
C. The left arm points down, and the right arm points up.
D. The left arm points up, and the tight arm points down.
2. Which of the following is not a zero for the function $f(x)=2 x^{3}-5 x^{2}-12 x$? Graph it!
A. $-4 \times$
B. $-\frac{3}{2}$
C. 0^{5}
D. 4

$\begin{array}{ll}\text { Grintits. What are the intercepts of the function } \\ f(x)=16 x^{2}+8 x+1 ? & y=(4 x+1)^{2}\end{array}$
3. Which describes the end behavior for the
A. x-intercept: $\left(\frac{1}{4}, 0\right), y$-intercept: $(0,0)$風 x-intercept: $\left(\frac{1}{4}, 0\right), y$ intercept: $(0,1)$
(C. x-intercepts: $\left(-\frac{1}{4}, 0\right)$ and $\left(\frac{1}{4}, 0\right), 4 x+1=0$ y-intercept: $\left(0_{p}-1\right) \quad x=-\frac{1}{4}$ function $f(x)=2+2 x^{3}-8 x+1$? 5 th degree
A. Both arms point up.
B. Bort arms point down.
ore end
C. The left arm points up, and the right arm points down.
D. The left arm points down, and the

识. x-intercepts: $\left(\frac{1}{4}, 0\right)$ and (4,0), y-intercept: $\left.(0,1) \Rightarrow y=16(0)^{2}+8,0\right) h 1$ right arm points up.

Use a graphing calculator for question \quad. 7 and 8 .

7. What is the range of the function $f(x)=x^{6}-3 ?$
A. the sec of all real numbers
B. $y \leq 0$
C. $\begin{aligned} & y \leq-\overline{3} \\ & \text { (D. } \\ & y\end{aligned} \quad[-3, \infty)$
(10.) $y \geq-3$
8. Which is ire of the function
$f(x)=-2 x^{4}+1$?
Use the graph of $f(x)=2^{x-1}-1$ for questions 5 and 6.
A. Ir is increasing on the interval,
$\{-\infty<x<0\}$.
$(-\infty, 0)$
B. It is increasing on the interval $\{0<x<\infty\}$. χ
C. Ir has a y-intercept at $(0,0) . X$
D. It has four real zeros.

5. What is the asymptote of this function?
A. the line $x=0$
B. the line $y=-1$
C. the line $y=0$
D. the line $y=1$

PRACTICE:

You may use graphing calcstator for questions $1-8$.

1. The graph of $f(x)=x^{2}+x-12$ is shown below.

Use this graph to determine the Factored form of $x^{2}+x-12$.
A. $(x-4)(x-3)$
B. $(x-3)(x+4)$
C. $(x-4)(x+3)$
D. $(x-0)(x-12)$
2. Which statement about the roots of $x^{3}-1 x=0$ is rue? Graph it?
A. It has 4 real solutions.
(B. It has 3 real solutions.
C. It has 2 real solutions and 1 nonreal solution.
D. Te has 1 real solution and 2 nonreal colarions.
5. The graph of $f(x)=x^{4}-9 x^{3}+27 x^{2}-27 x$ is shown below:

Which is true of the zeros of this function?
A. The zero 0 has a multiplicity of 2 .
B. The zero 0 has a multiplicity of 3 .
C. The zero 3 has a multiplicity of 3 .
b. The rape 3 has a multrinlicite of 4 .
3. The graph of $f(x)=x^{3}-2 x^{2}-3 x$ is shown below.

Use this graph to determine the factored
form of $x^{3}-2 x^{2}-3 x$.
A. $x(x-3)(x+1)$
B. $x(x-1)(x+3)$
C. $x(x-3)(x-1)$
D. $(x-1)^{2}(x+3)$
4. Which statement about the solutions of $x^{3}-8 x^{2}+17 x=0$ is tue?
A. It has 4 real solutions.
B. Ir has 3 real solutions.
C. It has 2 real solutions and 1 nonreal solution.
D. It has I real solution and 2 nonreal solutions.
7. The graph of $f(x)=-x^{4} \div 4 x^{2}$ is

The graph of $f(x)=-x^{4}+4 x^{2}$ is
shown below. Row
Imaginary
Solutions must Come in pairs

$$
\begin{aligned}
& \text { Sid degree } \\
& \text { therefrom } \\
& \text { Should he } \\
& \text { 3 solutions } \\
& \text { Total }
\end{aligned}
$$

Algebra 2 Review Topic 6: Other!

Sequences and Series, Statistics, Composition of Functions, Varienton, Inverses, Properties

Sequences and Series

How do I know when to use each formula?

How do you know which formula to use for sequence and serfes problems?

Mixed Sequences and Series Practice
geometric

1) Find It 3 terms: $a_{1}=4, a_{n+1}=2 a_{n}+1$ for $n \geq 1$
$2,1, \frac{1}{2}, \frac{1}{4} \ldots \quad r=\frac{a_{2}}{a_{1}}=\frac{1}{2}$
$a_{n}=$ current term next term $=$
$a_{n+1}=$ next term
$a_{n-1}=$ presions term
2. current term +1

$$
4,9,19
$$

3) Find the 3 arithmetic means: $5,3,1,-1,-3$

$$
-3-5=-8 \quad-8+4=-2
$$

$$
\text { 2) Find } a_{20} \text { for }
$$

$$
\begin{aligned}
& a_{n}=a_{1} \cdot r^{n-1} \\
& a_{20}=2\left(\frac{1}{2}\right)^{20-1} \\
& a_{20}=\frac{1}{2^{18}}
\end{aligned}
$$

4) Find the $17^{\text {th }}$ term if $a_{1}=-20 \&(d)=4$
$a_{n}=a_{1}+(n-1) d$

$$
a_{17}=-20+(17-1)(4)
$$

$$
a_{17}=44
$$

Mixed Sequences and Series Practice - Continued
5) 97 is the \qquad ? ?_ th term of $-3,1,5,9, \ldots$

$$
\begin{array}{ll}
97=-3+(n-1) 4 & \\
97+3=(n-1) 4 & d=a_{2}-a_{1} \\
100=4(n-1) & \\
25=n-1 & \\
n=26 &
\end{array}
$$

7) Find the sum of eometrio series $a_{1}=10, a_{n}=270, n=4$

$$
\text { need } r
$$

$$
a_{n}=a_{1} r^{n-1}
$$

$$
270=10 \cdot r^{4-1}
$$

$$
27=r^{3}
$$

$$
\begin{aligned}
& S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{4}=\frac{10\left(1-3^{4}\right)}{1-3}
\end{aligned}
$$

$$
r=\sqrt[3]{27}=3
$$

$$
S_{4}=400
$$

arithmetic

arithmetic

geometric $r=\frac{a_{2}}{a_{1}}=\frac{-2}{1}=-2$
6) Find sum of $1-2+4-8+16 \ldots$ to 15 ems $n=15$
$S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$
$S_{15}=\frac{1\left(1-(-2)^{15}\right)}{1-(-2)}=10923$

Statistics 1 - Finding Regression Equation

9) Jean invested $\$ 380$ in stocks. Over the next 5 years, the value of her investment grew, as shown in the accompanying table. Write the regression equation for this set of data, rounding all values to two decimal places. Using this equation. find the value of her stock, to the nearest dollar, 10 years after her initial purchase.
Stat Edit Linear regression Turn Stat

Stat \rightarrow Canc $\rightarrow \operatorname{Lim} \operatorname{Reg}(a x+b)$

Years Since Investment (x)	Value of Stock, in Dollars (y)
0	380
1	395
2	411
3	427
4	445
5	462

plot on
Zoom 9

$$
y=16.46 x+378.86
$$

$$
y=16.46(10)+378.86=543.46 \approx \$ 543
$$

Statistics 2 - Fundamental Counting Rule, Permutations, Combinations

10) In the next Olympics, the United States can enter four athletes in the diving competition. How many different teams of four divers can be selected from a group of nine divers?

$$
9 C_{4}=126
$$

11) Find the total number of different twelve-letter arrangements that can be formed using the letters in the word PENNSYLVANIA.

$$
12 P_{12}=479,001,600
$$

12) A four-digit serial number is to be created from the digits 0 through 9 . How many of these serial numbers can be created if 0 can not be the first digit, no digit may be repeated, and the last digit must be 5 ?

$$
\text { not our } \frac{8}{5} \cdot 8 \cdot 7 \cdot 1=448
$$

13) A multiple choice test has 10 questions where each question has 4answers. If you select one of the four answers for each question, how many different ways can you answer the questions?

$$
\begin{gathered}
4.4 .44 \cdot 4 \cdot 4 \\
=4^{10}=1048576
\end{gathered}
$$

Statistics 3 -Normal Distribution and Z-Scores

14) The width of shark jaws are normally distributed with a mean of 15.7 and a standard deviation of 2.8 inches. What is the probability that a shark that you examine at random has a jaw width less than 18.5 inches?

$$
\begin{array}{rlrl}
z=\frac{18.5-15.7}{2.8} & =1 & 50 \%+34 \% & =84 \% \\
& P(\text { shark width }<18.5) & =0.84
\end{array}
$$

15) What is the probability that a shark that you examine at random has a jaw greater than 20 inches?

$$
z=\frac{20-15.7}{2.8}=1.54 \quad\left(z=\frac{x-\mu}{\sigma}\right)
$$

use table!

$$
\begin{aligned}
P(z>1.54)= & 1-P(z<1.54) \\
= & 1-.9382=0.0618 \\
& \text { from table approx. } 6 \%
\end{aligned}
$$

16) If $f(x)=\sqrt{x}+1$ and $g(x)=x+3$, then find $f \circ g$.

$$
f(g(x))=f(x+3)=\sqrt{x+3}+1
$$

17) If $f(x)=\frac{1}{x}$ and $g(x)=x^{2}-x$, find $f(g(-1))$.

$$
f(g(-1))=f(2)=\frac{1}{2}
$$

Inverses $g(-1)=(-1)^{2}-(-1)=2$
Ito function $y=\frac{1}{2} x-2$.
18) Find the inverse of

$$
\text { Switch } x \text { and } y: \begin{aligned}
x & =\frac{1}{2} y-2 \\
x & +2=\frac{1}{2} y \\
2 x & +4=y
\end{aligned}
$$

$$
f^{-1}(x)=2 x+4
$$

20) Graph the inverse of the line segment.
21) What is the range of the graphed line segment?
22) What is the domain of the inverse? $\left\{\begin{array}{l}(-1,4] \\ \text { the } \\ \text { same }\end{array}\right.$

$$
(-1,4]
$$

19) Is $y=x^{2}-2$ a one-to-one function?

Not a 1-to-1 function
Dues not pass horizontal lime test so its inverse is not a function

23) Graph $y=10^{x}$ and the inverse of $y=10^{x}$.

Polvnomial/Svnthetic division

$y=10^{x}$	
x	y
0	1
1	10
2	100
-1	$\frac{1}{10}$
-2	$\frac{1}{100}$

switch x, y
and graph
25) Divide: $\frac{2 x^{3}+5 x^{2}+9}{x+3}=0 \ldots x=-3$
$2 x^{2}-x+3$
$4 x-25+\frac{85 x-57}{x^{2}+3 x-2}$
24) Divide: $\frac{-13 x^{2}+4 x^{3}+2 x-7}{x^{2}+3 x-2}$

$$
\begin{aligned}
& x^{2}+3 x-2 \frac{4 x-25}{4 x^{3}-13 x^{2}+2 x-7} \\
&-\left(4 x^{3}+12 x^{2}-8 x\right) \\
&-25 x^{2}+10 x-7 \\
& \frac{-\left(-25 x^{2}-75 x+50\right)}{85 x-57}
\end{aligned}
$$

$$
\begin{array}{ccccc}
-3 & 2 & 5 & 0 & 9 \\
\downarrow & -6 & 3 & 9 \\
\hline 2 & -1 & 3 & 0 \\
& \uparrow & \uparrow & \uparrow & \\
& x^{2} & x & \# &
\end{array}
$$

$100 x y=10^{x}$ 10^{x} $y=\chi$
$\therefore s y^{2}$

Log/exponential equations base is always base
Convert each log expression into an exponential expression.
26) $\log _{12} \underbrace{144=2}$
$144=12^{2}$
27)
$\begin{aligned} \log \frac{1}{64} & =-3 \\ \frac{1}{64} & =4^{-3}\end{aligned}$
28) $\log _{2} 3=\frac{1}{3}$
$3=27^{\frac{1}{3}}$

Convert each exponential expression into a log expression.
29) $\sigma^{2}=36$
$z=\log _{6} 36$
30) 2$)^{5}=\frac{1}{32}$
$-5=\log _{2} \frac{1}{32}$
31) $\stackrel{\text { min }}{ }=p$
$n=\log _{m} p$
$y=3 x+2$
$x=3 y+2$
$x-2=3 y$

PR A $\frac{x-2}{3}=y$

8. Which pair of functions are inverses? Use composition to determine the answer.
A. $f(x)=3 x+2$ and $g(x)=3 x-2$
B. $f(x)=3 x+2$ and $g(x)=\frac{x-2}{3}$
C. $f(x)=3 x$ and $g(x)=\frac{3}{x}$
D. $f(x)=3 x$ and $g(x)=x-3$

1. Given $f(x)=\frac{x}{3}$ and $g(x)=6 x+9$, which is equal to $f(g(x))$? $f(6 x+9)$
$\begin{aligned} & \text { A. } x \\ & \text { B. } 2 x+3\end{aligned}=\frac{6 x+9}{3}=2 x+3$
C $2 x+9$
D. $6 x+9$
2. If $h(x)=2 x$ and $j(x)=3 x^{2}$, then which is equal to $j(h(x))$? $j\left(3 x^{2}\right)$
A. $6 x$ $=2\left(3 x^{2}\right)$
B.) $6 x^{2}$ $=6 x^{2}$
C. $12 x$
D. $12 x^{2}$
3. Given $f(x)=2 x^{2}-8$ and $g(x)=x+2$, what is the value of $f(g(5))$?
A. 42
$f(g(5))$
B. 68
$g(5)=5+2=7$

$$
\begin{aligned}
f(7) & =2(7)^{2}-8 \\
& =98-8=90
\end{aligned}
$$

6. The graph of $f(x)=2 \sqrt{x}$ is shown on the grid below.

Which is not a point on thenerers: of this function?
$\operatorname{sinap} x, y$.
A. $(0,0)$
$(0,0)$
(B.) $(2,-1)$
$(-1,2)$
C. $(4,4)$
$(4,4) \checkmark$
D. $(6,9)$
$(9,6)$
7. Which of the following is the equation of the inverse of $f(x)=\frac{2}{x} ? \quad y=\frac{2}{x}$
(A.) $f^{-1}=\frac{2}{x}$
$\frac{x}{T}=\frac{2}{y}$
B. $f^{-1}=\frac{x}{2}$
C. $f^{-1}=2 x$
D. $f^{-1}=2$

$$
2=x y
$$

$$
y=\frac{2}{x}
$$

$$
f^{-1}(x)=\frac{2}{x}
$$

5. There are 8 books on a shelf. If 3 book, are chosen at random, how many ditticio groups of 3 books could be chosen:
A. 19
B. 28
C. 56
D. 65

$$
8 C_{3}
$$

6. In a figure skating umps tuition, the order in which skaters compete is determine ad b, a drawing. Suppose there are 6 skat (t) in competition. In how mon differ ont w... can a first and seciod their be cha;:
A. 720
B. 360
C. 30
D. 15

$6 P_{2}$

7. For a civil trial, 5 popple out of a pant of 11 people must be ch oven to delibes ace a jurors. How many dill sent group; of s jurors could be selected from the pard of 11 people?
A. $\quad 120$
B. 462
${ }_{11} C_{5}$
C. 55,440
D. 332,640
8. To \log on to the school computer system. each student must choose a password with 2 digits and 2 letters, in that ord 1 Each letter and digit may be used only once. How many different passwords are possible?
A. 90
B. 650
C. 14,901
D. 58,500

$$
10.9 .26 .25
$$

4. The graph of $f(x)=x^{3}$ is shown on the grid below.

Which is not a point on the inverse of this function?
A. $(-8,-2)$
B. $(-1,1)$
$(-2,-8)$
$(1,-1) \times \cdots(1,1)$
$(0,0)$
(2.8)
C. $(0,0)$
D. $(8,2)$
5. Which of the following is the inverse
of $f(x)=9^{\text {r }}$?
(A.) $f^{-1}=\log _{9} x$

$$
\begin{aligned}
& y=9^{x} \\
& x=9^{y} \\
& y=\log _{a} x
\end{aligned}
$$

B. $f^{-1}=9 \log x$
C. $f^{-1}=\frac{x}{9}$
D. $f^{-1}=9 x$

$$
\begin{aligned}
& C T \text { : current term } \\
& \text { NT: next term } \\
& \text { PT: previous term }
\end{aligned}
$$

1. Which recursive formula describes the geometric sequence shown below?

$$
\frac{a_{2}}{a_{1}}=\frac{-24}{-6}=4
$$

(A) $a_{n}=a_{n-1} \cdot 4$
$C T=P T \cdot 4$
B. $a_{n}=a_{n-1},-4$
$C T=P T \cdot(-4)$
C. $a_{n}=a_{n-1} \cdot-6$
$C T=P T(-b)$
D. $a_{*}=a_{*-1} \cdot-18$
$C T=P T \cdot(+8)$
4. Look at the notation below. What is the indicated sum for the arithmetic series?

A. $3068,6,4, \cdots,-26$
$a_{n}=$

Use the information below for questions 6 and 7.

Gamal is buying a new laptop computer on layaway. He paid $\$ 25$ initially and will increase his payment each week. His planned payments will form an arithmetic sequence, as shown in the table. If he follows them, his laptop will be fully paid for in 11 weeks.
B. -26
(C.) -162

$$
S_{1 S}=\frac{18}{2}(8+-26)
$$

D. -468

$$
S_{18}=-162
$$

5. What is the indicated sum for this - geometries series?
S_{6} for $4,20,100,500,2500,12500$
A. 624
B.) 3,124

$$
a_{1}=4 \quad r=\frac{20}{4}=5
$$

12,500
D. 15,624

4. Look at the notation below. What is the indicated sum for the arithmetic series?

$$
\sum_{k=1}^{18}(10-2 k)
$$

A. 306

6. What will Gamal's planned payment be in Week 11?
A. $\$ 75$

$$
y=10 x+15
$$

(1.) $\$ 125$
C. $\$ 135$

$$
\begin{aligned}
& y=10(11)+15 \\
& y=125
\end{aligned}
$$

D. $\$ 275$
7. What will be the total amount paid for the laptop in 11 weeks?
A. $\$ 300$
(B.) $\begin{aligned} & \$ 825 \\ & \text { C. } \$ 880\end{aligned}$

$$
S_{11}=\frac{11}{2}(25+125)
$$

$S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
D. $\$ 1,375$

$$
S_{11}=825
$$

$$
\begin{aligned}
S_{6} & =\frac{a_{1}\left(1-r^{b}\right)}{1-r} \\
& =\frac{4\left(1-5^{6}\right)}{1-5} \\
& =5^{6}-1 \\
& =3124
\end{aligned}
$$

Topic 7 Trigonometry Review:

Pythagorean Theorem, SOH CAH TOA and word problems

Pythagorean Theorem example: set hypotenuse (longest side or across from right angle) to "c"

SOHCAHTOA

1. A side of an equilateral triangle is 20 cm long. What is the height/altitude of this triangle in the simplest radical form? (Do you see a right triangle?)

$$
\begin{aligned}
& h^{2}+10^{2}=20^{2} \\
& h^{2}=300 \\
& h=\sqrt{300}=10 \sqrt{3}
\end{aligned}
$$

2. A side of a square is 4 cm long. What is the diagonal of the square in the simplest radical form? (Do you see a right triangle?)

$$
4^{2}+4^{2}=x^{2} \quad x=\sqrt{32}=4 \sqrt{2}
$$

3. Solve for x . Round to the tenth.

$\left.\cos 45=\frac{x}{6} \quad \begin{array}{rl}x & =6 \cos 45 \\ & =4.2\end{array}\right]$

$\sin 15=\frac{7}{x}$

4. Solve for x.Round to the tenth.

$$
x=\frac{7}{\sin 15}=27.0
$$

1)

diagmal $\rightarrow \quad c^{2}=a^{2}+b^{2}$
5. Which window with the following dimensions is too small to allow a 35 -inch piece of glass to fit through it?
A. 28×45 inches $c^{2}=28^{2}+45^{2} \quad c=53$
B. 16×33 inches $c^{2}=16^{2}+33^{2}$
$c=36.7$
C. 20×28 inches $C^{2}=20^{2}+28^{2} \quad C=34.4$
D. 40×42 inches $c^{2}=40^{2}+42^{2}$
$c=58$ diagonal is shorter than 35
6. Stephen is planning a right triangular garden. He marked two sides that measure 24 feet and 25 feet. He wants to know the perimeter of the garden so that he can find out how many bricks he should buy at the store. Find the perimeter of the garden. $\quad n^{2}+24^{2}=25^{2}$

7. The trainer adjusted a 6 -foot long bench press so that the angle of elevation was 8°. How many inches did the trainer raise the bench press?

$$
\begin{aligned}
& \sin 8^{\circ}=\frac{x}{6} \\
& x=6 \sin 8^{\circ}=.3350 \mathrm{ft}
\end{aligned}
$$

$$
\text { times } 12 \quad 10.0 \text { inches }
$$

8. From the top of a 145 -foot high tower, an air traffic controller observes an airplane on the runway at an angle of depression of 22°. How far from the base of the tower is the airplane?

$$
\begin{aligned}
& \tan 22=\frac{145}{x} \\
& x=\frac{145}{\tan 22}=358.9 \mathrm{ft}
\end{aligned}
$$

9. Chelsea whose eyes are 5 feet above the ground is standing on the runway of an airport feet from the control tower. She observes an air traffic controller at the window of the control tower. The angle of elevation from the person to the air traffic controller is

$$
\begin{aligned}
& 35^{\circ} \text {. How tall is the control tower? } \\
& \left.\qquad \begin{array}{l}
\tan 35=\frac{x}{100} \\
x=100 \tan 35=70 \\
\text { tower height }=
\end{array}\right) \text { eye haght }+x=75 \mathrm{ft}
\end{aligned}
$$

10. Liz is building a rectangular gate. The dimensions of the gate are 6 feet high and 4 feet wide. She wants to fasten a thin brace diagonally at the corners to keep the gate sturdy. Approximately, how long is the brace?

$x=2 \sqrt{13}$
$a^{2} x^{2}=c^{2} \quad 11$. Rosemary is cutting 3 wooden stichs to build part of a kite frame. The part she is building must be a that apply.

$$
3^{2}+4^{2}=5^{2} \quad 10^{2}+12^{2} \neq 15^{2}
$$

A.
$64^{2}+5^{2} \neq 6^{2} \quad \begin{array}{r}3^{2}+4^{2} \\ \\ \text { B. } .4,3.5\end{array}$
C.10.15,12
(D) $12.13 .5 \quad 5^{2}+12^{2}=13^{2}$

$$
\begin{array}{cc}
\text { ‥ } \sqrt{7}, \sqrt{5}, 4 & \text { (F.) } \sqrt{3}, \sqrt{6}, 3 \\
(\sqrt{7})^{2}+(\sqrt{5})^{2}=12 & (\sqrt{3})^{2}+(\sqrt{6})^{2}=9 \\
4^{2}=16 & 3^{2}=9
\end{array}
$$

(G.). $9,40,41$
$4+40^{2}=1681$
$41^{2}=1681$

$$
\text { H1. } \sqrt{5}, 2 \sqrt{2}, 13
$$

$(\sqrt{5})^{2}+(2 \sqrt{2})^{2}=13$
$13^{2}=169$
12. The angle of depression of an object on the ground is 14° from the top of the tallest building in the world, one of Petronas towers in Malaysia, which is 1,483 feet high. What is the distance from the object to the base of the tower to the nearest foot?

$$
\begin{aligned}
& \tan 14=\frac{1483}{x} \\
& x=\frac{1483}{\tan 14}=5947.988 \ldots
\end{aligned}
$$

13. You are at the air show in Virginia Beach. You are looking up at a British Harrier Jet at an angle of elevation of 59°. If the plane is hovering 1100 ft above the water, how far are you from the jet (direct distance)? Round to the nearest foot.

$$
\begin{aligned}
& \sin 59=\frac{1100}{x} \\
& x=\frac{1100}{\sin 59}<1283.2967 \ldots \quad 1283 \mathrm{ft}
\end{aligned}
$$

Finding Arc Length \& Area of Sector

$$
\begin{aligned}
\text { Arc Length } & =\frac{\theta}{360^{\circ}} \times 2 \pi r \\
& =\frac{30^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 7 \mathrm{~cm} \\
& =3.667 \mathrm{~cm}
\end{aligned}
$$

$$
\text { Area of Sector }=\frac{\theta}{360^{\circ}} \times \pi r^{2}
$$

$$
=\frac{30^{c}}{360^{\circ}} \times \frac{22}{7} \times 7^{2}
$$

$$
=12.83 \mathrm{~cm}^{2}
$$

diameter radius $=18$

1. Given circle T with $W P=36 \mathrm{~cm}$. Calculate the exact area of the shaded sector.

$$
\pi r^{2} \frac{\theta}{360}=\pi(18)^{2}\left(\frac{50}{360}\right)=141.37
$$

2. Find the length of the balcony. arc

$$
\operatorname{air}\left(\frac{\theta}{360}\right)=2 \pi(40) \frac{70}{360}=48,87
$$

3. Calculate the area of the shaded sector, to the nearest tenth.

$$
\pi r^{2}\left(\frac{\theta}{360}\right)=\pi\left(15^{2}\right) \frac{45}{360}=88.36
$$

4. The minute hand on a clock is 10 centimeters long and travels through an arc of 108° every 18 minutes. Find the measure of the length of the are the minute hand travels through during this 18 -minute period.

$$
2 \pi r\left(\frac{\theta}{360}\right)=2 \pi(10)\left(\frac{108}{360}\right)=18.85
$$

